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Abstract

Both parallel and perpendicular polarized surface waves are known to propagate

on Iossless and lossy grounded dielectric slabs. This paper considers surface wave

propagation on a grounded dielectric slab covered with a resistive sheet. Both parallel

and perpendicular polarizations are examined. Transcendental equations are derived

for each polarization and are solved using iterative techniques. Attenuation and phase

velocity are shown for representative geometries. The results are applicable to both a

grounded slab covered with a resistive sheet and an ungrounded slab covered on each

side with a resistive sheet.
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Surface resistance on the resistive sheet (Ohms/square).

Thickness of the resistive sheet.

Conductivity of the resistive sheet.

Electrical resistance, (ohms).

Mode which is transverse magnetic to the ._ direction.

Mode which is transverse electric to the J? direction,

Magnetic field vector in region I.

Magnetic field vector in region II.

Electric field vector in region I.

Electric field vector in region II.

Relative amplitude of field in region I.

Relative amplitude of field in region II.

Propagation constant in the _ direction in region I.

Propagation constant in the :_ direction in region U.

Propagation constant in the $ direction.

Radian frequency of the electromagnetic field.

Permeability in region I.

Permittivity in region I.

Relative permittivity in region I.

Permeability of free space.

Permittivity of free space.

Propagation constant of free space.
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Thickness of the dielectric slab.

Perfect electric conductor.

4zT.

Surface current in the resistive sheet.

Real part of the propagation constant f.

Imaginary part of propagation constant f.

Real part of the propagation constant h r

Imaginary part of propagation constant h I.
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Integer describing the order of each surface wave mode.



I. INTRODUCTION

Surface waves are known to propagate on lossless and lossy dielectric covered

ground planes. Surface waves of this type are important in the study of microstrip

antennas, travelling wave antennas, and scattering. A good discussion of surface

waves on a grounded and an ungrounded lossless dielectric slab has been presented by

Balanis [1]. Results are available concerning surface waves on lossy ferrite substrates

in a recent article by Richmond, Peters, and Hill [2]. Surface waves on a thin resistive

sheet and on a coated substrate were examined by Richmond [3]. Surface waves in a

thin lossy dielectric were also examined by Richmond [4]. An abundance of work has

been done concerning resistive boundary conditions and scattering from resistive strips

[51-[lO1.

This paper examines surface wave propagation in a grounded dielectric slab

covered with a resistive sheet. Such a geometry is shown in Figure 1 (a). For parallel

polarized waves only even modes will be considered so that the results will also apply

to the geometry in Figure l(b). Similarly, for perpendicular polarized waves only odd

modes will be considered with the results applying to both geometries as well. Note

.... for these cases the electric field vanishes at z=0. Also, note that the geometry in

Figure l(b) is similar to that examined by Richmond [3] with the addition of a second

resistive sheet. The resistive sheet is assumed to have zero thickness and have a sur-

face resistivity in ohms per square Rs=l/(_t) where t is thickness of the sheet [5]. As

t approaches zero, t_ is assumed to increase so that R s remains finite in the limit as t

approaches zero [6].
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II. THEORY

Figure 1(a) shows the geometry of a dielectric slab backed by a ground plane and

covered by a resistive sheet. The region above the resistive sheet, region II, is

assumed to be free space. The magnetic field intensity for parallel polarized waves,

TM x, is given by

17 ! = Ae -fx cosh(h lz ) .v

1-7tl = Be-fX e-h:

where the propagation constants f, h 1 , and h 2 are related by

(1)

(2)

h 12+ f2 ___c02talEl

h 2 + f 2 = __(021.toeo = _ko 2.

Using Maxwell's equations, the tangential electric field intensity is given by

(3)

(4)

-Ah le-fX sinh(h lz )

j o_l

E1xI = Bh2 e-fx e-h2z
j o)e o

The boundary conditions at z=d are

(5)

(6)

Exz = E/z (7)

H: - H:I= Js (8)

where Js is the electric surface current supported by the resistive sheet and is given by

Ex Bh 2e -fx e -h 2d (9)
Js= R--S= jO oR,

Using (1)-(6) and the boundary conditions described above the following transcenden-

tal equation is obtained for parallel polarized waves:

+ h2erCOSh(h 1d) = (10)

h 2rlo

h lsinh(h i d) 1 + jko_ s
0

As R s approaches zero or infinity, (10) reduces to the correct equation for the parallel



plate waveguide or the grounded dielectric slab waveguide, respectively.

For waves with perpendicular polarization, TE x, the electric field intensity is

given by

_,! = Ae-fX sinh(h 1z ) 3_

_II = Be -fx e-h 2z

with the tangential magnetic field given by

(11)

(12)

Ah le-fXcosh(h lz )
II'x-

jO)BI

-Bh 2e -fx e -h 2z
HI'=

j OBo

The boundary conditions for this case are

(13)

(14)

and the surface current is given by

= yo (15)
HIl - nl = Js (16)

Ey Be-fx e-h 2d

Js = R--7= R, (17)

Using (11)-(14) and the boundary conditions the following transcendental equation is

obtained for perpendicularly polarized waves:

h jko rio ]sinh(htd) 2 + R-----_ + hlc°sh(hld) = 0 (18)

It is assumed that BI = Bo. As before, this equation reduces to the appropriate equation

as R s tends towards zero or infinity and h 1,h 2 and f are related as in (3) and (4).

For both polarizations the propagation constants may be written in complex form

as follows:

f = ot + j_3 (19)

h 1 = txl + J _1 (20)



h2 = 0_2 +J_2 (21)

Using (19) the normalized phase velocity of the wave is given by [2]:

v_ _ ---k° (22)

where c is the velocity of light in free space. A mode is considered to be cutoff when

the normalized phase velocity approaches infinity. For a lossless slab with no resistive

covering the mode number m is defined as [2]:

m = INT(_ld/I0 (23)

where the INT function results in the highest integer that is less than the argument of

the function. This definition will be used for the grounded slab with a resistive cover-

ing also. As stated in references 2 and 3, we will be interested in solutions of equa-

tions (10) and (18) for which the x-axis propagation constant f is in the first quadrant

of the complex plane and the z-axis propagation constants h I and h 2 are in the fourth

quadrant of the complex plane. The transcendental equations (10) and (18) can be

solved by using (3) and (4) to make each equation a function of f and then using

iterative techniques to find the values of f that satisfy each equation.



III. NUMERICAL RESULTS

The transcendental equation derived above for parallel polarized waves has been

solved iteratively for the x-axis propagation constant f. The roots of the equation

were found by using the IMSL subroutine ZANLY available on the Cray-2 computer

at NASA Langley Research Center. Figure 2 shows the attenuation constant, _, and

the normalized phase velocity, v/c, as a function of surface resistivity, R s , for a

grounded dielectric slab with thickness d=O.l_, o and relative permittivity Er=4. The

attenuation constant is given in riB/wavelength which is calculated as:

o_ (dB / _,o ) = 8.6859 × o_ (nepers /m ) x _,o. (24)

Only data for the four lowest order propagating modes are shown. As was previously

found, [2], when using (23) to calculate the mode number, m, two modes are identified

by m=0 for parallel polarizati0nl In Figure 2 note that as Rs increases, mode 1 is

eventually cut off. Figure 3 shows the electric field intensity as a function of position

for modes 0-3. As expected the tangential electric fields go through zero at z=O, arc

continuous across the resistive sheet, and decay exponentially above the resistive sheet.

Also, note the increase in the number of relative maxima and minima as the mode

number increases.

In Figure 4 data are shown for parallel polarized surface waves on a slightly

thicker dielectric slab, d=0.125_, o , with the same relative permittivity, Er--4. Modes 2

and 3 maintain similar behavior to that shown in Figure 2. However, in this case it is

mode 0 that cuts off as Rs is increased.

The transcendental equation (18) derived above for perpendicular polarization has

been solved for the x-axis propagation constant f. Figure 5 shows the attenuation con-

stant and relative phase velocity for these waves in a grounded dielectric slab with
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thickness d=0.052, o , and relative permittivity er--4. Only the four lowest order pro-

pagating modes are shown. As the surface resistivity, R s , increases all modes are

eventually cut off. In Figure 6 similar data are presented for a grounded dielectric slab

of thickness d=O.l_, o . Note that the attenuation constant has been reduced by approxi-

mately one half for each mode when compared to Figure 5. Also, the value of surface

resistivity at cutoff in Figure 6 is approximately twice the value shown in Figure 5.

Although it is not shown in Figure 6, mode 0 cuts off as R s increases to approximately

210_/sq. Electric field intensity for the modes 0-2 described in Figure 6 is shown in

Figure 7. As for parallel polarization, the fields go through zero at z--0, are continuous

at z=d, and decay exponentially above z=d. Note, however, the increase in the number

of minima and maxima for this case when compared to parallel polarization.



IV. SUMMARY

This paper has examined surface wave propagation for both parallel and perpen-

dicular polarization in a grounded dielectric slab covered by a resistive sheet. Results

are also valid for the even TM x and odd TE x modes for an ungrounded dielectric slab

covered on each side by a resistive sheet. Transcendental equations have been derived

for both polarizations and solved by using iterative techniques. Attenuation constant

and normalized phase velocity are presented for each polarization. Electric field inten-

sity distributions for the propagating modes are also presented.
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Figure 1. Geometry of a grounded dleleetde slab covered by a resistive sheet (n). and
a dielectric slab covered on both sides by reslstlve sheels (b).
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